Index-> contents reference index search Up-> SPT_HELP AnalogFilterFunctions polbes Prev Next SPT_HELP-> SPTFunctionsByCategory Mathematical Functions Data Manipulation Functions SignalGeneratorMain AnalogFilterFunctions FIR Filter Design Window Functions IIR Filter Design FourierFunctions Plotting Functions Histogram Functions AnalogFilterFunctions-> fnbut fncheb1 fncheb2 fnbes fn2clp fn2chp fn2cbp fn2cbs fnbpole fnc1pole polbes gains makealog polbes Headings-> Description Example Reference

Bessel polynomials of Order N
 Syntax `polbes(`Norder, a`)` Include: `include spt\polbes.oms` See Also fnbpole , fnc1pole
``` ARGUMENTS:    INPUTS:       Norder = SCALAR. Requested order of polynomial. Coerced to                INTEGER before local processing. Norder >= 2.       a      = VECTOR, COLUMN, for return (type disregarded on input).                Polynomial coefficients. Type DOUBLE.    RETURN: novalue. Polynomial returned in argument 'a'. ```
Description ``` ```Returns the coefficients of Bessel polynomials as a DOUBLE column vector 'a'. These polynomials are commonly used as the basis for analog Bessel filters which approximate constant group delay. The coefficients form a polynomial as follows: ``` ```a => a(1) + a(2)*s + a(3)*s^2 + ... ``` ```Order 'Norder' must be >= 2.

Example ``` ```Find the coefficients of a 6th order Bessel polynomial. ``` O>a = novalue O>polbes(6,a) O>a { 10395 10395 4725 1260 210 21 1 } ``` Reference ``` ```Blinchikoff and Zverev, "Filtering in the Time and Frequency Domains", Krieger, Malabar, FL. 1987 (Reprint Edition)