Index-> contents reference index search Up-> SPT_HELP SignalGeneratorMain nrzbits Prev Next SPT_HELP-> SPTFunctionsByCategory Mathematical Functions Data Manipulation Functions SignalGeneratorMain AnalogFilterFunctions FIR Filter Design Window Functions IIR Filter Design FourierFunctions Plotting Functions Histogram Functions SignalGeneratorMain-> binbits nrzbits awgn cawgn ammod pmmod fmmod quadmod sinwave triwave sawwave sqrwave RandNumGens OtherSigGen nrzbits Headings-> Description Example

Randon Non-Return-Zero Binary Data
 Syntax `y = nrzbits(`N`)` Syntax `y = nrzbits(`N,M`)` Include: `include spt\nrzbits.oms` See Also binbits
``` ARGUMENTS:    INPUTS:         N = SCALAR, any numerical type, coerced to INTEGER           before processing. Represents the number of rows           in the returned matrix.       M = SCALAR, any numerical type, coerced to INTEGER           before processing. Represents the number of            columns in the returned matrix.    RETURN: MATRIX, INTEGER, equi-probable 1s and -1s. ```
Description ``` ```Create matrix of random Non-Return-to-Zero (NRZ) symbols, i.e., equi-probable values of -1 or 1. Returns a matrix filled with equi-probable non-return-to-zero bits, i.e., 1s and -1s. Integer type in returned. Binary data is sometimes represented this way since multiplication of 1s and -1s is isomorphic to binary addition.

Example
Create a 5x6 array of +1's and -1's: ``` O>nrzbits(5,6) { [  -1 ,  -1 ,  -1 ,   1 ,  -1 ,  -1 ] [  -1 ,   1 ,   1 ,   1 ,  -1 ,   1 ] [   1 ,  -1 ,   1 ,  -1 ,  -1 ,   1 ] [   1 ,  -1 ,   1 ,  -1 ,   1 ,   1 ] [   1 ,  -1 ,  -1 ,  -1 ,  -1 ,  -1 ] } ```