Prev Next gains

Complex Gain of a Laplace Transfer Function
Syntax y = gains(b,a)
Syntax y = gains(b,a,f)
Include: include spt\gains.oms
See Also gainz

       b = VECTOR, COLUMN. Numerator polynomial as column vector of
           real-valued term coefficients. I.e.,
           b => b(1) + b(2)*s + b(3)*s^2 + ..., s = jw = j2*PI*f
           Any numerical type. Coerced to DOUBLE for local processing.
       a = VECTOR, COLUMN. Denominator polynomial as column vector of
           real-valued term coefficients. I.e.,
           a => a(1) + a(2)*s + a(3)*s^2 + ...
           Any numerical type. Coerced to DOUBLE for local processing.
       f = MATRIX. Frequencies for evaluation [Hz]. Any numerical type.
           Coerced to DOUBLE for local processing. If missing, transfer
           function is evaluated at f=0 Hz only.
   RETURN: MATRIX, COMPLEX. (b/a)(f), same dimension as 'f', type COMPLEX.
           If 'f' is missing, return (b/a)(0), type DOUBLE.


Returns the complex gain of a Laplace transfer function H(s) = b(s)/a(s) evaluated at frequencies in matrix 'f'.

This function returns a matrix of the same dimensions as input 'f' whose elements are the evaluation of H(s) = b(s)/a(s) at real frequencies 'f', where 'f' is in [Hz]. The input polynomials 'b' and 'a' are column vectors representing polynomials as follows:

b -> b(1) + b(2)*s + b(3)*s^2 + ...,

where s = j*2*PI*f, (j = sqrt(-1).

If argument 'f' is left off, then the DC gain at f=0 is returned.

Make an analog 3rd Order Butterworth filter and find its complex gain at three frequencies.

include spt\gains.oms        # include gains() function
b = novalue;                 # Declare numerator polynomial
a = novalue;                 # Declare denominator polynomial
fnbut(3,b,a);                # Make an order = 3 Butterworth function
f = {1d-1, 1d0, 1d1}/2d0/PI; # Make a frequency evaluation vectorvector
H = gains(b,a,f);            # Find the complex gain
format complex "f10.6"
H                            # Print the gain results

The results are:

(  0.979999, -0.199000)
( -0.500000, -0.500000)
( -0.000199,  0.000980)