Index-> contents reference index search Up-> SPT_HELP AnalogFilterFunctions fncheb1 Prev Next SPT_HELP-> SPTFunctionsByCategory Mathematical Functions Data Manipulation Functions SignalGeneratorMain AnalogFilterFunctions FIR Filter Design Window Functions IIR Filter Design FourierFunctions Plotting Functions Histogram Functions AnalogFilterFunctions-> fnbut fncheb1 fncheb2 fnbes fn2clp fn2chp fn2cbp fn2cbs fnbpole fnc1pole polbes gains makealog fncheb1 Headings-> Description Example Reference

Normalized Chebyshev Type 1 Lowpass Filter
 Syntax `fncheb1(`Norder, Ap, b, a`)` Include: `include spt\fncheb1.oms` See Also fnbut , fncheb2 , fnbes
``` ARGUMENTS:    INPUTS:       Norder = SCALAR. Requested order of transfer function. Coerced to                INTEGER before local processing. Norder >= 2.       Ap     = SCALAR. Passband ripple in dB, Ap > 0.0 dB. Coerced to                double for local processing.       b      = VECTOR, COLUMN, for return (type disregarded on input).                Numerator polynomial coefficients. Type DOUBLE.       a      = VECTOR, COLUMN, for return (type disregarded on input).                Denominator polynomial coefficients. Type DOUBLE.    RETURN: novalue. Filter functions are returned in 'b' and 'a'. ```
Description ``` ```This function creates a normalized TYPE 1 Chebyshev s-domain lowpass transfer function of the form: H(s) = b(s)/a(s). The 3-dB cutoff frequency is set to 1 radian/sec. The requested filter order 'Norder' must be >= 2. The numerator polynomial of the transfer function is returned through argument 'b', and is a column vector where the elements form a polynomial as follows: ``` ```b => b(1) + b(2)*s + b(3)*s^2 + ... ``` ```Denominator polynomial is returned in argument 'a', and is of the same form. The function calls SPT function 'fnc1pole()'. ``` ```A Chebyshev TYPE 1 filter has equi-ripple behavior in the passband and monotonically increasing attenuation in the stopband. The passband peak-to-peak ripple is set via parameter 'Ap' in dB, where Ap > 0.0dB (strictly positive). Due to the nature of Chebyshev functions, even order filters cannot have a gain of unity at 0 Hz as can odd order filters. Even order filters start at Ap dB down at 0 Hz and begin passband ripple characteristics from there. All filters are passive, i.e., they can a gain of 1.0 at most at any given frequency.

Example ``` include spt\fncheb1.oms # Design CHEBYSHEV Type 1 lowpass prototype filter, fc = 1 [radian/sec] Norder  = 5;                 # Filter Order Ap      = 2d0;               # Passband Ripple b       = novalue;           # Declare numerator   polynomial a       = novalue;           # Declare denominator polynomial fncheb1(Norder, Ap, b, a);   # Make prototype filter # Evaluate this filter around its cutoff. fmin    =  1d-2; # Plotting Limits fmax    =  1d0; ymax    =  10d0; ymin    = -60d0; N       = 201; # Plotting information n       = seq(N)'-1d0; f       = logspace(log10(fmin),log10(fmax),N)'; H       = gains(b,a,f); HdB     = db20(H); fc      = 1d0/2/PI; # 3dB down at this cutoff ``` A plot of the normalized CHEBYSHEV Type 1 filter apperas as: ``` ``` ``` ```Reference
Blinchikoff ``` ```