Contents Previous Next Subchapters Current Chapters-> identity zeros ones fill fillcols fillrows seq toeplitz vander hankel hilb invhilb diag tril triu novalue Parent Chapters-> Omatrix6 elementary specialmatrices toeplitz Search Tools-> contents reference index search

Constructing Toeplitz Matrices
 Syntax t` = toeplitz(`c`)` t` = toeplitz(`c`, `r`)` See Also levinson

Description
Constructs a Toeplitz matrix with first its first column equal to the vector c and its first row equal to the vector r. If the argument r is not present, its default value is the complex conjugate of c. If the first element of r is not equal to the first element of c, the first element of c is used for the diagonal of the matrix. ``` ```If the vectors c and r have equal length `n`, the return matrix is ```          / c   r    r   ...  r    \          |  1   2    3        n   |          |                        |          | c   c    r   ...  r    |          |  2   1    2        n-1 |      t = | .    .   .        .    |          | .    .     .      .    |          | .    .       .    .    |          |                        |          | c   c    c   ...  c    |          \  n   n-1  n-2      1   / `````` ```In general, if `n` is the length of c and `m` is the length of r, the return value t is an `n x m` matrix with ```               / c           if i - j > 0              /   i - j + 1      t    = <        i,j    \  r           if j - i > 0               \  j - i + 1  ```The type of t is the type that results from coercion between the type of c and r.

Example
If you enter ```      c = [ 1 , 2 , 3 ]      toeplitz(c) ``` O-Matrix will reply ```      {      [ 1 , 2 , 3 ]      [ 2 , 1 , 2 ]      [ 3 , 2 , 1 ]      } ```