Contents Previous Next Subchapters Current Chapters-> pol2asc polval polyval polyvalm poladd polmul polcomp polder zero2pol roots poly pol2zero polcheb polyreduce mlmode_conv deconv residue compan monomial Parent Chapters-> Omatrix6 polynomial roots Search Tools-> contents reference index search

Finding Roots of a Descending Polynomial
 Syntax `roots(`p`)` See Also polval , pol2asc

Description
Returns a complex column vector that contains the roots of the descending polynomial corresponding to the real, double-precision or complex vector p; i.e., ```                  n-1              1      p[x] =  p  x   + ... +  p   x   +  p               1               n-1        n ```If z is the return value, it has one fewer elements than p and `p[x]` evaluated at `x = z(i)` is zero for each `i`.

Example
The roots of the polynomial ```       2      x  -  1 ```are -1 and +1. If you enter ```      p = [1., 0, -1.]      roots(p) ``` O-Matrix will reply ```      {      (-1, 0)      (1, 0)      } ``` or it will reply ```      {      (1, 0)      (-1, 0)      } ``` because the order of the roots is not determined.

Exceptions
If the method fails, the return value has type equal to `"novalue"`. This should be a very rare case.