Contents Previous Next Subchapters Current Chapters-> pol2asc polval polyval polyvalm poladd polmul polcomp polder zero2pol roots poly pol2zero polcheb polyreduce mlmode_conv deconv residue compan monomial Parent Chapters-> Omatrix6 polynomial polder Search Tools-> contents reference index search

Computing the Derivative of a Polynomial
 Syntax `polder(`p`)` See Also polval , pol2asc

Description
Returns the column vector that corresponds to the derivative of the polynomial that corresponds to the integer, real, double-precision or complex column vector p. If v is a column vector of length n the corresponding polynomial `v[x]` and its derivative `dv[x]` are ```                          1        2                n-1       v[x] = v  +    v  x  +  v  x   +  ...  + v  x               1       2        3                n                                1                    n-2      dv[x] = v  +  2 v  x  +  ... + (n-1) v  x               2       3                    n ```The vector p must have at least one element. The return value has the same type as p. If p had one element, the return value is the scalar zero, otherwise the return value has one less element than the vector p.

Example
If you enter ```      p = {1, 1, 1, 1}      polder(p) ``` O-Matrix will reply ```      {      1      2      3      } ```