Contents Previous Next Subchapters Current Chapters-> mlmode_mean mlmode_std mlmode_ellipke mlmode_disp mlmode_warning str2mat int2str mlmode_contour mlmode_mesh mlmode_meshc mlmode_surf mlmode_surfc mlmode_meshgrid mlmode_etime mlmode_finite mlmode_full mlmode_isieee mlmode_isunix mlmode_issparse mlmode_isstr Parent Chapters-> Omatrix6 mlmode mlmode_mfile mlmode_ellipke Search Tools-> contents reference index search

Legendre's Complete Elliptic Integrals (Mlmode)
 Syntax `[`K`, `E`] = ellipke(`m`)` See Also ellipf , ellipe

Description
Computes an element-by-element approximation of the elliptic integral K defined by ```             pi/2             /            2    -1/2       K(m) = | [ 1 - m sin (x) ]   dx             /             0 ```where the argument m is a real or double-precision matrix and for each `(i, j)`, ```      0 < | m   | < 1             i,j `````` ```If the return value E is present, it is set to the element-by-element approximation of the elliptic integral E defined by ```             pi/2             /            2     1/2       E(m) = | [ 1 - m sin (x) ]   dx             /             0 ```
Example ```                    pi/2                    /         K(0) = E(0) = | dx = pi/2                    /                    0 ```If in Mlmode you enter ```      [K, E] = ellipke(0.);      K ``` O-Matrix will reply ```      1.5708 ``` The variable `E` will also be set to this value.