Contents Previous Next Subchapters Current Chapters-> gplot gplotstyle gplotlevels glevel ginit gstyle gprint gcopy gsave gcolor gaddwin gaddwin1 gaddwin2 gaddwin3 gaddwin4 gwin glistwin gaddview setview gview gview2 glistview ginitview gdelview gaddborder gdelborder gborder gupdate Parent Chapters-> Omatrix6 graphics basicGraphics gplot Search Tools-> contents reference index search

Drawing Line Plots
 Syntax `gplot(`y`)` `gplot(`x`, `y`)` `gplot(`x`, `y`, `z`)` See Also gaddview , gxyzaxis , and gplot(x, y, style)

Description
Plots a curve for each column of y, where y is an integer, real, or double-precision matrix specifying the `y` value for each point. The first column correspond to a curve with the next color in the current color sequence , the second column corresponds to the following color and so on. If x is not present, `i` is the `x` value corresponding to `y(i,j)`. If z is not present, 0 is the `z` value corresponding to `y(i,j)`. ``` ```If x is present, it is an integer, real, or double-precision matrix and has same number of rows as y. If x is a column vector, `x(i)` is the `x` value corresponding to `y(i,j)`. Otherwise x also has the same number of columns as y and `x(i,j)` is the `x` value corresponding to `y(i,j)`. ``` ```If z is present, it is an integer, real, or double-precision matrix and has same number of rows as y. If z is a column vector, `z(i)` is the `z` value corresponding to `y(i,j)`. Otherwise z also has the same number of columns as y and `z(i,j)` is the `z` value corresponding to `y(i,j)`. ``` ```The current line style, width and symbol size are determined by the previous call to the gstyle function.

Example
If you enter ```      ginit      x      = 0. : .1 : 2 * pi      y      = [sin(x), cos(x)]      gplot(y) ``` O-Matrix will draw with the following plot ``` ```
``` ```If you enter ```      ginit      x      = 0. : .1 : 2 * pi      y      = [sin(x), cos(x)]      gplot(x, y) ``` O-Matrix will draw the following plot ``` ```
``` ```If you enter ```      ginit      y      = 0. : .01 : 2 * pi      z      = cos(4 * y)      x      = sin(4 * y)      gplot(x, y, z)      grotate(30, 0, 70)      gxtitle("x")      gytitle("y")      gztitle("z") ``` O-Matrix will draw the following plot ``` ```