Contents Previous Next Subchapters

Carlson's Elliptic Integrals of the Third Kind
Syntax elliprj(xyzp)
See Also elliprf , elliprd

Description
Computes an element-by-element approximation of the elliptic integral defined by
                   +inf
                 3 /       -1/2      -1/2      -1/2      -1
R (xyzp) = - | (t + x)   (t + y)   (t + z)   (t + p)  dt
 j               2 /
                   0
where the arguments x, y and z are real or double-precision matrices with non-negative elements. If any of these arguments is not a scalar, it must have the same dimension as the other arguments that are not scalars. For each element, z cannot be zero and only one of x and y can be zero.

Example
                   +inf                         |t=+inf
                 3 /        -5/2           -3/2 |           -3/2
R (xxxx) = - |  (t + xdt = - (t + x)    |        = x
 j               2 /                            |
                   0                            |t=0
If you enter
     x = double(rand(2, 3))
     print elliprj(x, x, x, x)
     print x^(-1.5d0)
O-Matrix will print two matrices with the same values.