Contents Previous Next Subchapters

Carlson's Elliptic Integrals of the First Kind
Syntax elliprf(xyz)
See Also elliprd

Description
Computes an element-by-element approximation of the elliptic integral defined by
                     +inf
                   1 /       -1/2      -1/2      -1/2
     R (xyz) = - | (t + x)   (t + y)   (t + z)   dt
      f            2 /
                     0
where the arguments x, y and z are real or double-precision matrices with non-negative elements. If any of these arguments is not a scalar, it must have the same dimension as the other arguments that are not scalars. For each element, only one of these arguments can be zero.

Example
                +inf                         |t=+inf
              1 /        -3/2           -1/2 |           -1/2
R (xxx) = - |  (t + xdt = - (t + x)    |        = x
 f            2 /                            |
                0                            |t=0
If you enter
     x = double(rand(2, 3))
     print elliprf(x, x, x)
     print x^(-.5d0)
O-Matrix will print two matrices with the same values.