Contents Previous Next Subchapters Current Chapters-> erf ierf erfc beta betai gamma gammln gammainc besselj bessely besseli besselk elliprf elliprd elliprj ellipf ellipe ellipi kolsmi psi airy isprime lentz Parent Chapters-> Omatrix6 special ellipi Search Tools-> contents reference index search

Legendre's Elliptic Integrals of the Third Kind
 Syntax `ellipi(`phi`, `n`, `k`)` See Also elliprf

Description
Computes an element-by-element approximation of the elliptic integral defined by ```                 phi                 /           2    -1        2   2    -1/2  Pi(phi, n, k) = | [1 + n sin (x) ]  [ 1 - k sin (x) ]   dx                 /                 0 ```where the arguments phi n and k are real or double-precision matrices. If both of these arguments is not a scalar, they must have the same dimension. For each `(i, j)`, ```      | phi(i, j) | < pi/2  and  | k(i, j) | < 1 ```
Example ```                       phi                       /         Phi(phi, 0, 0) = | dx = phi                       /                       0 ```If you enter ```      phi = rand(2, 3)      print ellipi(phi, 0., 0.)      print phi ``` O-Matrix will print two matrices with the same values.