Contents Previous Next Subchapters Current Chapters-> prctile ftail tpdf ttail ittail cnormal inormal rand snormal seed colmad colmse colrange colmode kurtosis skewness randperm ranseed unifm0v1 unirnd normrnd exprnd gamrnd cauchyrnd gumbelrnd laplacernd lognrnd wblrnd binornd poissrnd exppdf expcdf normpdf unifpdf unifcdf wblpdf wblcdf colcor colcov colmean colstd colmax rowmax colsum rowsum colnorm rownorm median colmedian colmead colvar corr conv conv2 sum cumsum prod cumprod Parent Chapters-> Omatrix6 statistics conv Search Tools-> contents reference index search

Column-wise Convolution Of Matrices Using FFT
 Syntax `conv(`g`, `h`)` See Also mlmode_conv , corr , polmul , filter

Description
Returns a matrix that is the column-wise convolution of g with h, where g and h are integer, real, double-precision, or complex matrices with the same column dimension. If `ng` and `nh` are the number of rows in the matrices g and h, respectively, the (k,j)-th element of the return value is ```       ng      -----                                   / 0        if k-i+1 < 1      >      g    H         where  H       = <  0        if k-i+1 > nh      -----   i,j  k-i+1,j          k-i+1,j   \ h        otherwise      i = 1                                      k-i+1,j ```The return value is a matrix with row dimension equal to `ng + nh - 1` with the same type and column dimension as g. An FFT is used to compute the convolution. The polmul function computes a similar value directly.

Example ```      g = {1., 1., 1., 1., 1.}      conv(g, g)' ``` returns ```      [ 1 , 2 , 3 , 4 , 5 , 4 , 3 , 2 , 1 ] ```